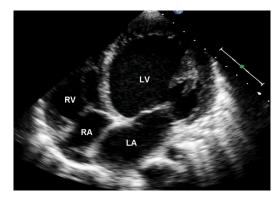


Workshop metabolic cardiomyopathies

Case 1 Acute exercise intolerance & dyspnoea

Clinical presentation



- 16 year old male adolescent
- consanguineous Hispanic parents, adopted at 2 years
- acute exercise intolerance, fatigue, breathlessness and dyspnoea on exertion
- symptoms lasted for 1 week
- medical history unremarkable except for a nonproductive cough and generalized myopathy for 1 month

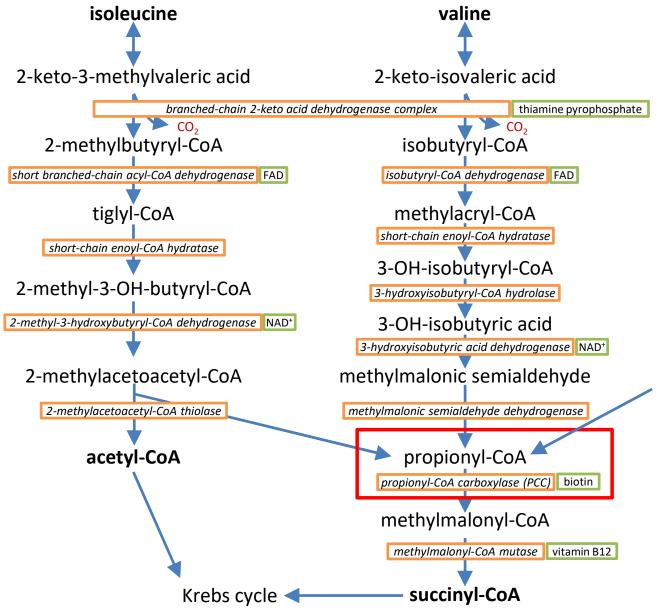
Additional information

- attended special school education due to behavioral problems (on methylphenidate)
- recent neurocognitive evaluation: various mild deficits, IQ 83
- Echocardiography: severe dilated cardiomyopathy

- ejection fraction 25% \rightarrow ICU

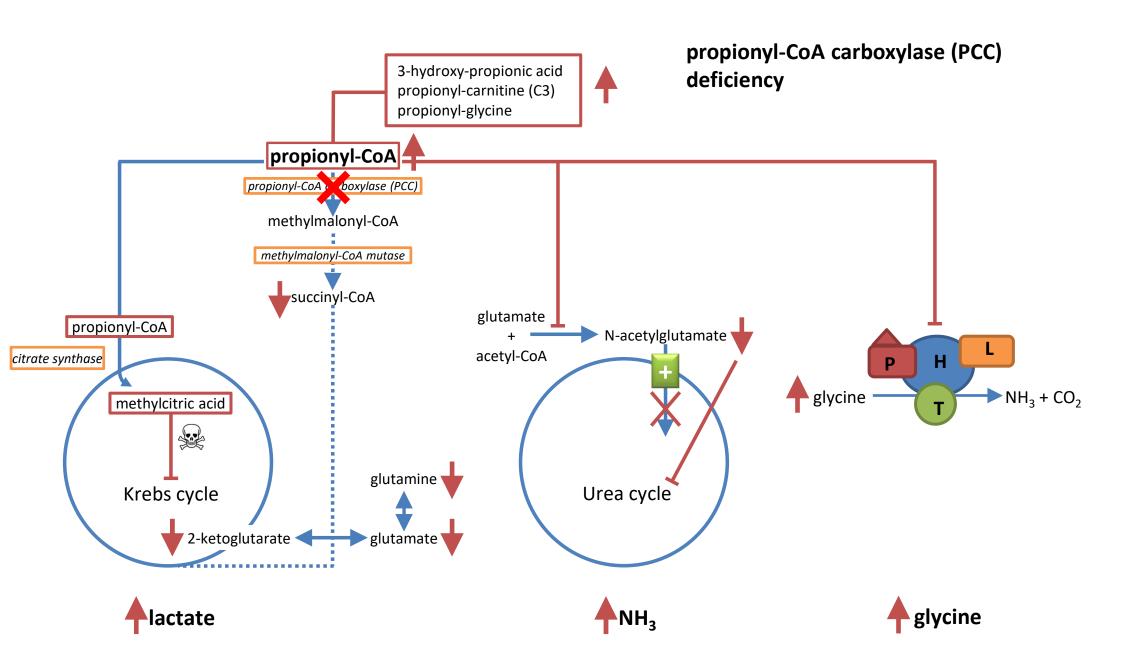
• Electrocardiography: prolonged QTc-time (457 ms; ref. <440)

Further course on ICU


- therapy for congestive heart failure with diuretics furosemide,
 spironolactone, and hydrochlorothiazide, and continuous milrinone
- later also angiotensin converting enzyme (ACE) inhibitors
- cardiac muscle biopsy: unspecific lymphocyte infiltration
- Multiplex PCR for viral genome in blood & cardiac muscle: negative

What metabolic tests would you want to perform?

Metabolic investigations


- Unremarkable: blood gases, lactate
- Amino acid in plasma: glycine 417 μmol/L (147–299), rest normal (including alanine 360 μmol/L and glutamine 720 μmol/L)
- Acylcarnitines in DBS: propionylcarnitine 13.5 μmol/L (<3.5), free carnitine 32.3 μmol/L (20-54.8)
- Organic acids in urine (in mmol/mol crea): 3-hydroxypropionate 130 (<10), 2-methylcitrate 110 (<20), methylmalonate <10 (<10)
 What is your diagnosis?

propionyl-CoA carboxylase (PCC)

(other) sources of propionic acid/propionyl-CoA

- Valine
- Odd-chain and branched-chain fatty acids
- Methionine
- Isoleucine
- Threonine
- bacterial metabolism in the gut

Diagnostics for confirmation

- *PCCB* gene: homozygous for novel variant c.1229G>A, p.R410Q
- PCC activity assays in lymphocytes 32.5 pmol/min/mg protein (lower limit of normal 228)
- PCC activity assays in fibroblasts 39.7 pmol/min/mg protein (lower limit of normal 287)

PCC: propionyl-CoA carboxylase

Further course and outcome

- treatment for congestive heart failure continued (later tapered)
- start with L-carnitine 80 mg/kg /day
- reduced dietary protein from 3 g/kg /day to 1.5 g/kg /day
- no additional amino acid mixtures
- methylphenidate stopped due to reported association with DCM
- cardiac function improved but remained impaired (EF 40%)

DCM: dilated cardiomyopathy; EF: ejection fraction

Other reports in literature

Eur J	Pediatr	(2014)	173:971	-974
-------	---------	--------	---------	------

Table 1 Patients with cardiomyopathy (CM) leading to diagnosis of late-onset propionic acidaemia (PA)

Patient, sex	Age at onset of CM	Acute therapy	Clinical course/recovery after diagnosis	PCC activity	Genotype (<i>PCCB</i> gene)	Reference ^a
1, m	6 years	Diuretics and inotropes	Rapid recovery; asymptomatic 2 months after onset of CM	Unknown	Unknown	[7]
2, f	13 months	Diuretics and bicarbonate	Rapid recovery within 1 week	Unknown	Unknown	
3, m	14 years	Cardiac transplantation	Rapid recovery after cardiac transplantation	19.9 % ^b	IVS7+2 T>G; p.R410Q	[5]
4, m	16 years	Diuretics and inotropes	Rapid recovery within 2 months	14.3 ^b and 13.8 % ^c	Homozygous for p.R410Q	Present case

m Male, f female

^a Reference search was restricted to PubMed. Search restrictions were: "propionic acidemia or propionic acidaemia and cardiomyopathy"

^b PCC activity in lymphocytes and ^c fibroblasts: percentage of normal lower limits

973

Take home message

- Late-onset cardiomyopathy can be presenting symptom in propionic acidemia in various populations not only in the Amish
- Propionic acidemia does not necessarily present with very strongly elevated metabolites
- Amino acid findings are of limited use in diagnosing propionic acidemia

Adult stroke

Clinical presentation

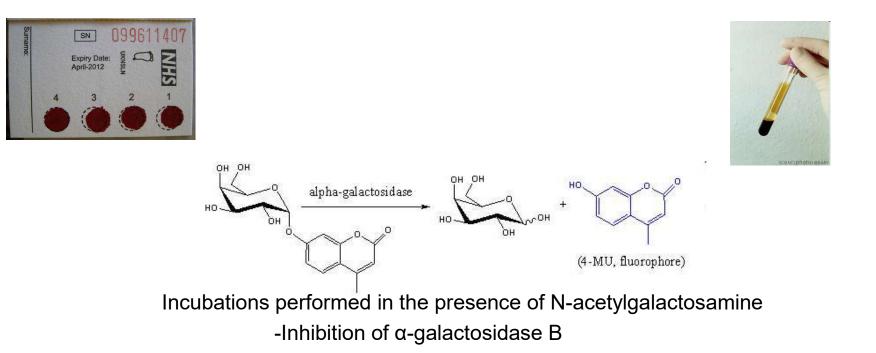
56 year-old man with right-sided numbness & weakness

Past history

- Sudden right-sided unilateral hearing loss at 49 years
- Chest pain left ventricular hypertrophy and hypertension at 46 years
- Mild renal impairment in his 50's

Examination

- Normal, apart from hearing impairment
- Weight 103.4 kg, BMI 32 kg/m², BP 109/76 mmHg


- Lipid profile: cholesterol 6.8 mmol/L (<5), LDL 5.8 mmol/L (<3)
- Fasting glucose normal
- Urine: proteinuria
- MRI brain white matter hyperintensity, left lacunar cerebral infarction
- Blood spot alpha-galactosidase activity < 1% of control
- *GLA* sequencing c.496-497delinsTC, p.Leu166Pro

Diagnosis: Fabry disease

What is your differential diagnosis?

Fabry disease - diagnosis

What Fabry phenotypes are there?

		Classic	Renal Variant	Cardiac Variant
Age at onset		4-8 yrs	>25 yrs	>40 yrs
Average age of death	1	41 yrs	>60 yrs	>60 yrs
	Angiokeratoma	++	-	-
	Acroparesthesia	++	-/+	_
	Hypohidrosis/ anhidrosis	++	-/+	_
	Corneal/lenticular opacity	+	_	_
Manifestation	Cardiac disease	LVH/ischemia	LVH	LVH/cardiomyopathy
	Cerebrovascular disease	TIA/stroke	_	_
	Renal disease	ESRD	ESRD	Proteinuria
	Residual α-Gal A enzyme activity	<1%	>1%	>1%
		M Academy 2023, Manche	ster	lehta & Hughes <i>GeneReviews</i>

Mehta & Hughes, GeneReviews, 2017

How would you manage this patient?

Enzyme replacement therapy (ERT)

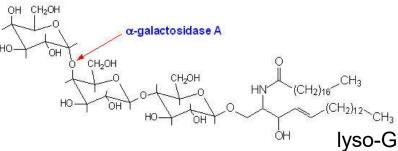
- Fabrazyme[®] (agalsidase beta 1 mg/kg every 2 weeks), or
- Replagal[™] (agalsidase alfa 0.2 mg/kg every 2 weeks)
- Both probably don't prevent stroke or hearing loss
- Both expensive & inconvenient
- Slow renal & cardiac complications

General supportive care

- Statins for lipids,
- Weight management,
- Consider aspirin & anti-platelet drugs Stop smoking,
- Blood pressure control,
- ACE inhibitor,
- Pacemaker, implantable defibrillator
- Renal dialysis or transplant
- Carbamazepine or gabapentin for acroparesthesia

Chaperone

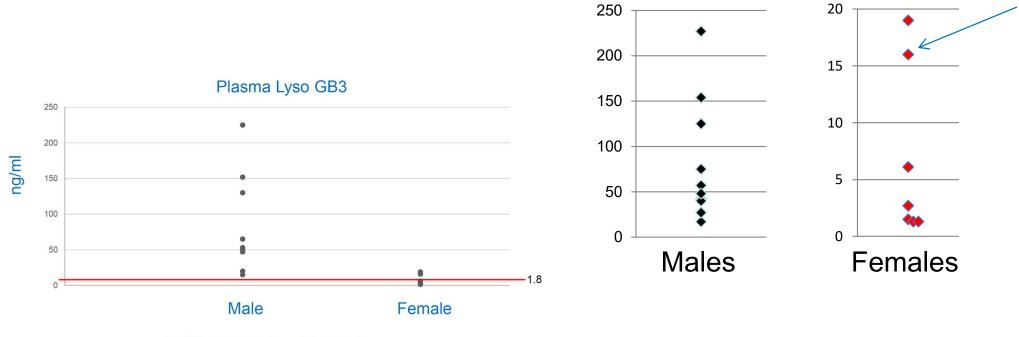
- Oral migalastat (1-deoxygalactonojirimycin, DGJ) enhances trafficking of mutated α-Gal A to lysosomes in specific mutations & may achieve similar benefit as ERT
- www.galafoldamenability.com (sponsored by pharma company)
- L166P is not amenable to migalastat


What monitoring would you do?

- Regular cardiology review
- Renal function, proteinuria annually
- Maybe brain MRI, neurocognitive testing how often?
- Plasma lyso-GB3

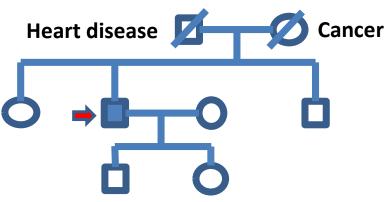
Lyso-GB3

Enzyme deficiency leads to substrate accumulation: Globotriaosylceramide (Gb3)



lyso-Gb3 formed by action of Acid Ceramidase

Date	2014 (Baseline)	2015 (on ERT)	2016 (on ERT)	2017 (on ERT)
Plasma lyso GB3 (<1.6 ng/mL)	32.5	6.0	4.9	4.2
Urine GB3 (<0.03 mg/mmol creatinine)	0.31	0.01	0.01	0.01


Lyso-GB3

Ref Range; 0.4 – 1.8 ng/ml

Genetic counselling

X-linked

- At risk: siblings: do they have symptoms? offer testing
- His daughter obligate carrier of the variant: does she have symptoms? offer testing for reproductive options
- His son not at risk

Outcome, 2 years after start of ERT

• Second cerebrovascular accident – significant residual right-sided weakness

Take home messages

Lyso-GB3 can be a useful screening tool – but is not always elevated in individuals with a Fabry gene variant

The phenotype is variable

Angiokeratomata may be difficult to detect

Source: fabrydisease.org

Source: ijohsjournal.org

Workshop Metabolic cardiomyopathies

Case 3 From the Heart

Clinical presentation

Baby boy, day one of life

- Blood glucose 1.9 mmol/L
- Metabolic acidosis with high lactate in blood

pH 7.15, Base Excess –23.4, lactate 14.7 mmol/l (N<2.1 mmol/l)

Test performed

Plasma

- Insulin
- Acylcarnitines
- Amino acids

Urine

• Organic acids

Test performed

Plasma

- Insulin \rightarrow undetectable
- Acylcarnitines \rightarrow essentially normal
- Amino acids \rightarrow high alanine

Urine

 Organic acids → nonspecific mitochondrial pattern with increased excretion of lactic, fumaric, malic and 4-hydroxy-phenyllactic acids

Clinical presentation

One month of age

- Echocardiography: dilated cardiomyopathy with noncompaction of the ventricular myocardium
- Progressive worsening of cardiac symptoms
- Persistent hypoglycemia

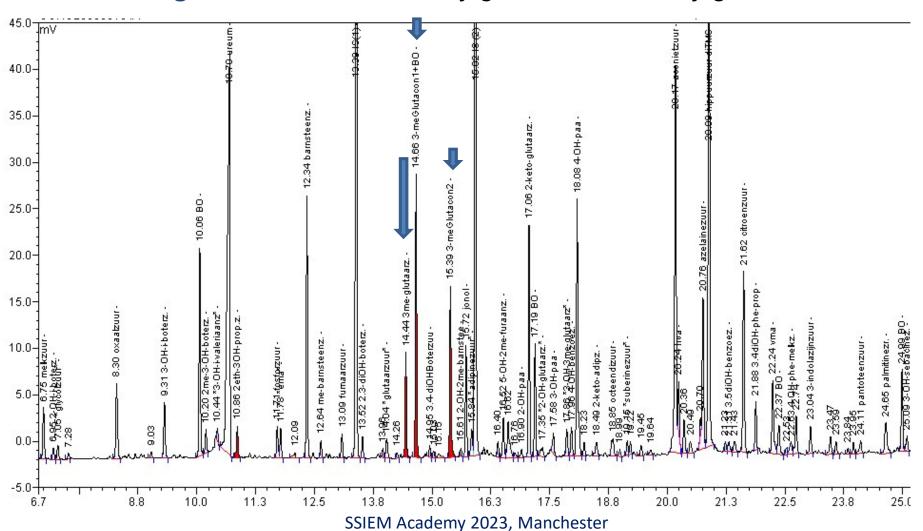
What is your differential diagnosis? Any further investigations?

Test performed

Muscle biopsy for mitochondrial investigations

- A reduction in respiratory chain enzyme activity was detected in the muscle biopsy
- No specific diagnosis made

Clinical presentation


Follow up at 3 years of age

- Growth delay
- Mild intermittent neutropenia
- No more hypoglycemia
- Cardiomyopathy

Follow up testing:

 Cardiomyopathy protocol reviewed and tests repeated

What is your current differential diagnosis? Are there specific metabolic abnormalities to look for?

Urine Organic Acids → *3-methylglutarate, 3-methylglutaconate*

3-methylglutaconate

Primary

 3 HMG CoA hydratase deficiency → grossly increased 3-MeGCA, also 3-OH isovalerate; neuromuscular presentation

Secondary

- Phospholipid remodelling disorders
 - Barth syndrome
 - MEGDEL syndrome
 - Sengers syndrome
- Other mitochondrial abnormalities
- Unknown

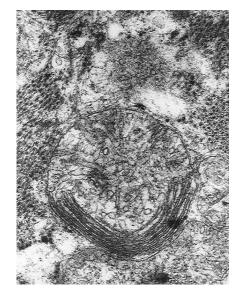
What is the likely diagnosis? What confirmatory tests?

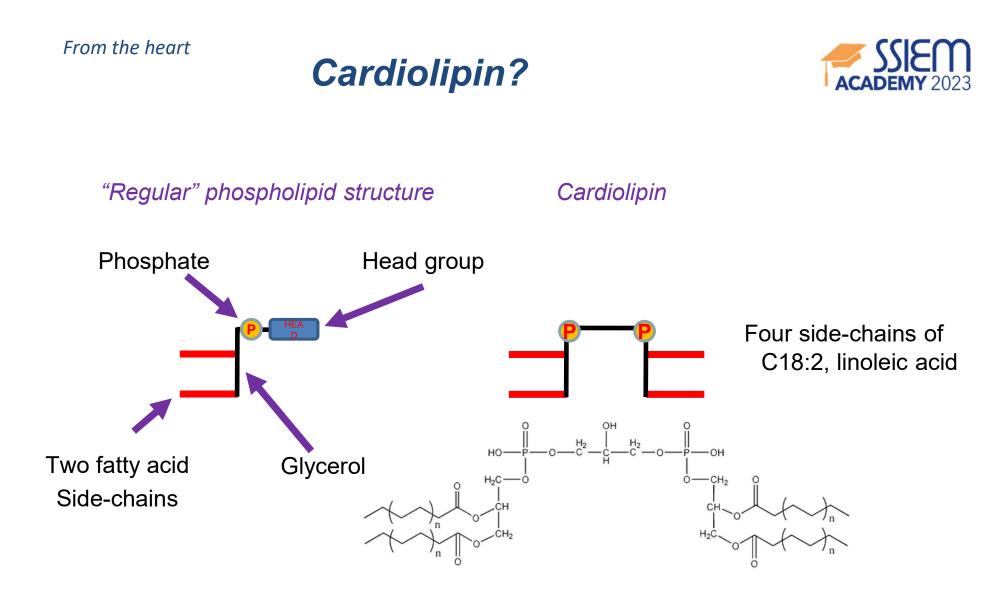
From the heart

Barth syndrome most likely

 Cardiomyopathy, growth retardation, 3-methylglutaconic aciduria, neutropenia

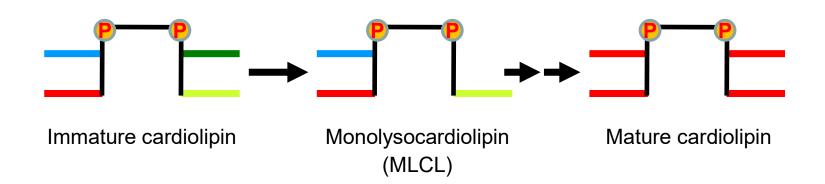
Confirmatory tests


- Bloodspot cardiolipin analysis monolysocardiolipin/cardiolipin ratio: 3.90 (N<0.3)
- Genetic testing Hemizygote variant in TAFAZZIN gene c.337_339deITTC p.Phe113del


From the heart

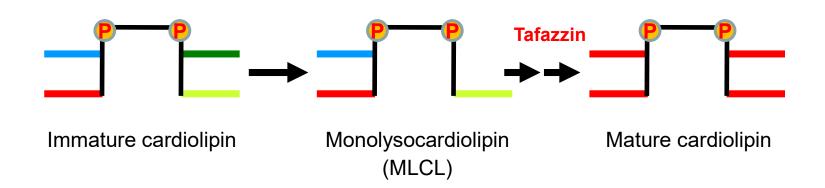
Barth syndrome

- First described in 1983 by Dr. Barth (AMC Amsterdam)
- Presentation variable, may include
 - Cardiac and skeletal myopathy
 - Neutropenia
 - Growth delay
 - Hypoglycaemia
 - Lactic acidosis
 - 3-methylglutaconic aciduria
- Consistent findings
 - Cardiolipin abnormalities
 - Abnormal mitochondrial structure and function
 - Variants in TAFAZZIN gene (Xq28)
- Diagnostic challenge as features are non-specific and inconsistent



From the heart

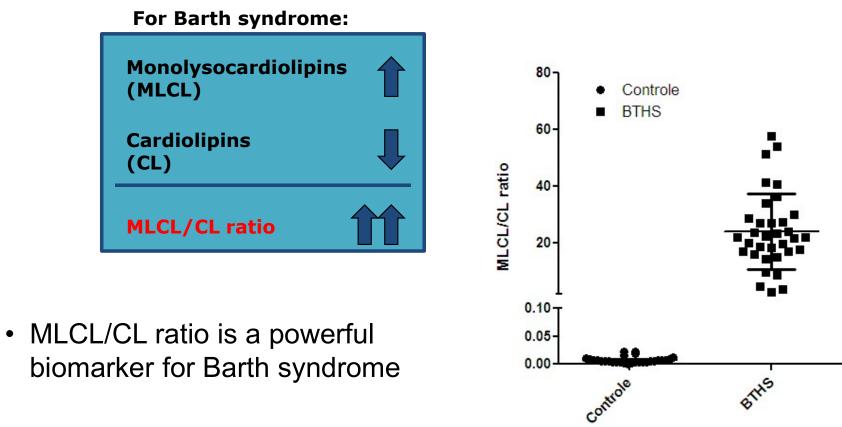
Cardiolipin synthesis and remodeling



- · Cardiolipin is actively remodelled to achieve the mature acyl composition
- This is affected in Barth syndrome

From the heart

Cardiolipin remodeling


For Barth syndrome patients you then expect:

- Lower mature CL levels
- Higher MLCL levels
- Altered CL and MLCL composition

From the heart

Barth syndrome diagnostics

From the heart **Take home messages**

- Cardiomyopathy is a key feature in most cases
- Barth syndrome should be considered when urine organic acids show increased 3-methylglutarate and 3-methylglutaconate
- 3-methylglutaconic acid is non-specific for Barth syndrome and is not a consistent finding
- MLCL/CL ratio in blood spot is a powerful, fast screen for Barth syndrome and a useful addition to genetic testing

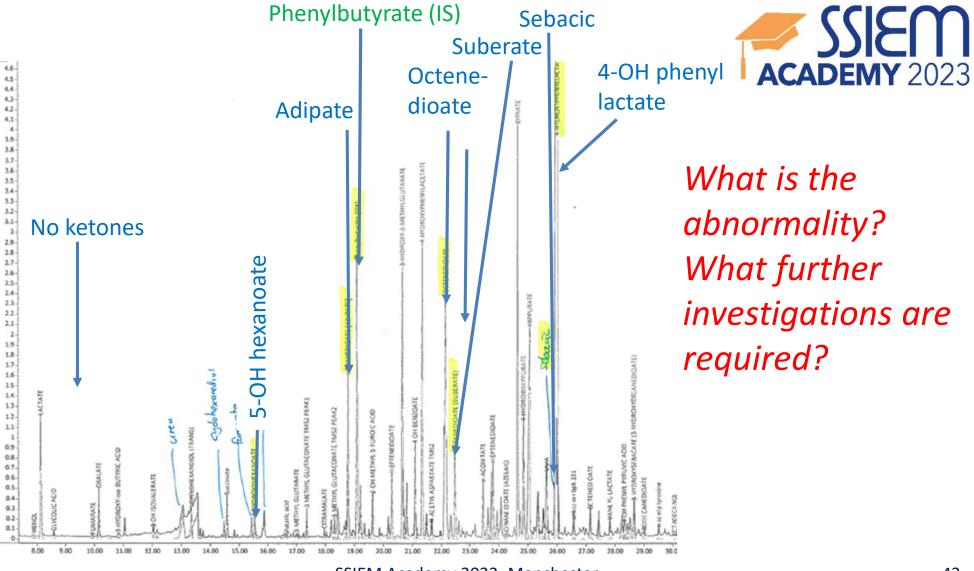
Workshop Metabolic cardiomyopathies

Case 4 Neonatal cardiomyopathy

Case background

- Baby girl born at 37⁺¹ weeks, 2.4 kg, small for gestation age
- Second child of consanguineous parents, sibling is well
- Well at birth, transferred to postnatal ward
- 18 hours of age, unresponsive, bradycardic, complete heart block
- Transferred to neonatal intensive care
- Blood glucose 0.9 mmol/L, samples taken for hypoglycaemia screen
- Cardiac rhythm changed to ventricular tachycardia
- Transferred to cardiac intensive care ward
- Cardiomyopathy screen requested
- What is your differential diagnosis? What further tests?

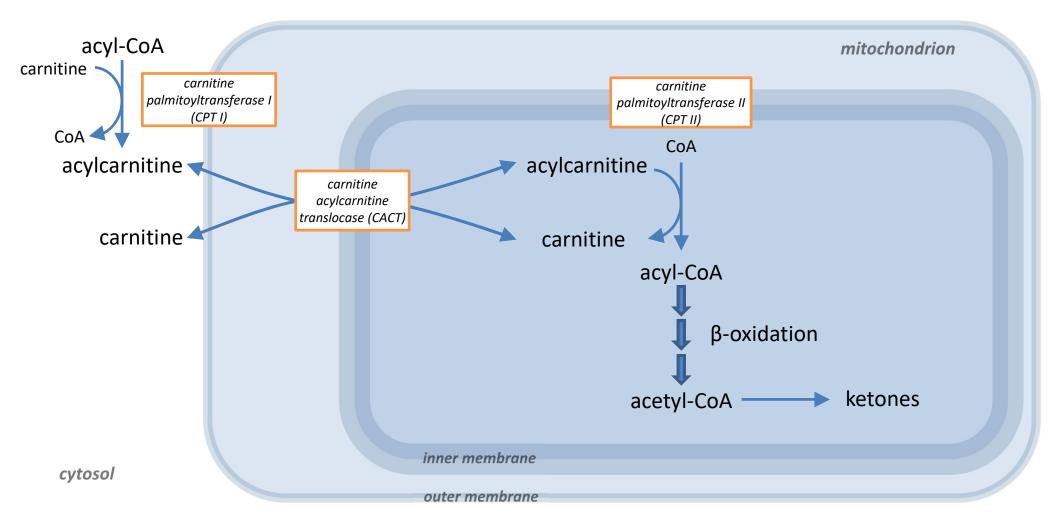
Hypoglycaemia screen


Test (plasma, serum)	Result (reference range)
Lab glucose	2.2 mmol/L
Lactate	2.2 mmol/L (0.6 – 2.5)
Cortisol	3412 nmol/L (< 410)
Insulin	< 6 pmol/L (12 – 150)
3-OH butyrate	<0.1 mmol/L (<0.9 non-fasting)
Free fatty acids	2.43 mmol/L (<0.2 non-fasting)
Ammonia	259 μmol/L (<100)

How do you interpret these results? What further tests would you prioritise?

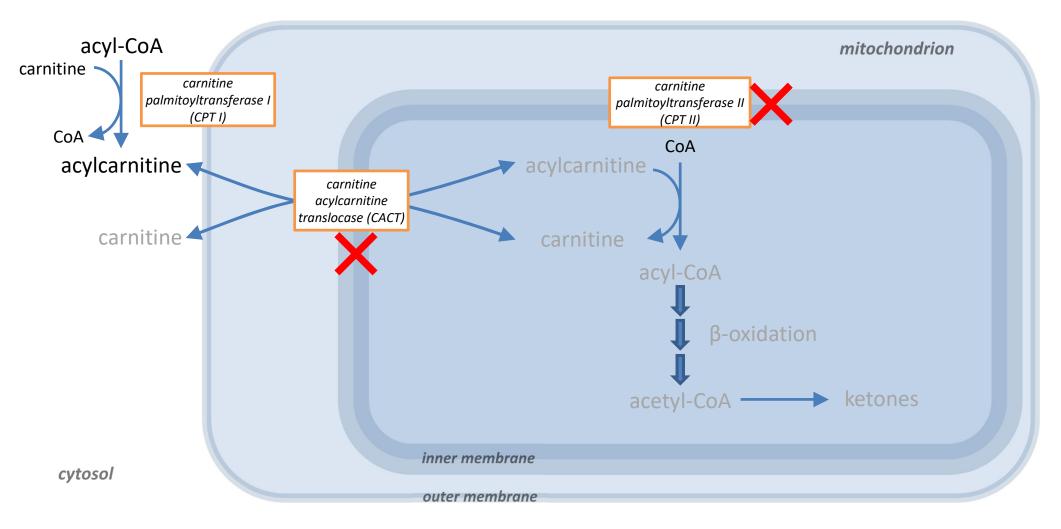
Hypoglycaemia screen

Test (plasma, serum)	est (plasma, serum) Result (reference range) Interpretation		
Lab glucose	2.2 mmol/L	Hypoglycaemia	
Lactate	2.2 mmol/L (0.6 – 2.5)	Normal	
Cortisol	3412 nmol/L (< 410)	Stress response	
Insulin	< 6 pmol/L (12 – 150)	Appropriately suppressed	
3-OH butyrate	<0.1 mmol/L (<0.9 non-fasting)	FFA/3-OHB ratio > 2	
Free fatty acids	2.43 mmol/L (<0.2 non-fasting)	indicates a fatty acid oxidation defect	
Ammonia	259 μmol/L (<100)	Hyperammonaemia	


Carnitine, acylcarnitines

Analyte (µmol/L) (MSMS, derivatised)	DBS	Ref range	Plasma	Ref range
C2	6.9	8.8 - 24	5.3	3.0 - 14.0
C16	15.8	< 5.0	11.3	< 0.32
C18	2.2	< 1.6	1.3	< 0.13
C18:1	4.4	< 2.6	5.1	< 0.54
(C16+C18+C18:1)/C2	3.2	0.2 – 0.5	3.4	0.02 - 0.16

Plasma free carnitine (underivatised MSMS method) 2.3 μmol/L (11 – 18) What is the diagnosis? How do you confirm it? Is there a difference between DBS and plasma acylcarnitines? SSIEM Academy 2023, Manchester


The carnitine shuttle / cycle

CPT II or CACT deficiency

Further investigations

- Muscle biopsy for mitochondrial studies Mild deficiency of complex I and complex IV
- Fibroblast fatty acid oxidation flux

Assay	Myristate (C14)	Palmitate (C16)	Oleate (C18:1)
% controls	1 %	2 %	6 %

Consistent with severe defect of long chain fatty acid oxidation e.g. CPT2, CACT, MADD

• Genetic testing

Homozygous *SLC25A20* variants c.713A>G, p.Gln238Arg Carnitine-acylcarnitine translocase (CACT) deficiency

CPT2 or CACT?

- Biochemistry the same
- CPT2

Typically presents with rhabdomyolysis following exercise or fasting Severe neonatal disease is a rare presentation Intermediate form with hypoglycaemia and liver dysfunction

• CACT

Most cases have neonatal presentation with early death Features: \oint glucose, \uparrow NH₃, cardiomyopathy, atrioventricular block Mild presentation is very rare

Patient Outcome

- Supportive therapy
- Died day 5

Is it necessary to test the older sibling for CACT deficiency? If so, which test would you recommend?

Three further pregnancies, no prenatal testing. Infants managed in specialist centre and plasma acylcarnitines analysed on day 2. Genetic testing also performed. None has CACT deficiency

Take Home Messages

- CACT deficiency can present with neonatal non-ketotic hypoglycaemia
- It is not possible to distinguish CACT and CPT2 with acylcarnitines
- Genetic testing is required to confirm a diagnosis
- Plasma acylcarnitines is more sensitive than DBS for detection of abnormalities of long-chain acylcarnitines
- Appropriate investigations requested during acute illness and liaison between the clinical and laboratory teams can provide quick diagnosis of fatty acid oxidation disorder

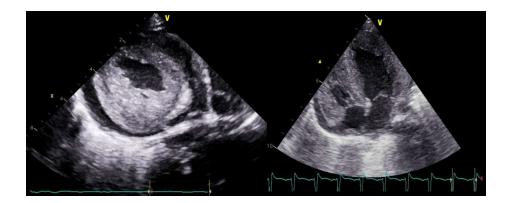
A neonate with respiratory distress

J Davison

Clinical presentation

- 3 day old male child
- 1st child born to consanguineous parents
- Pregnancy: normal (no gestational diabetes)
- Term normal delivery
- Noted to have tachypnoea, mild increased work of breathing
- Oxygen saturation 99% pre- and post-ductal
- Parasternal heave, loud second heart sound.
- Femoral pulses palpable.
- pH 7.34, pCO2 3.9 kPa, HCO3 19 mmol/L, Base excess –3 mmol/L, Lactate 3.9 mmol/L, Glucose 4.1mmol/L
- What is your differential diagnosis? SSIEM Academy 2023, Manchester

What is your differential diagnosis?


• Echocardiogram:

- Severe biventricular hypertrophy
- Dyskinetic septum
- Appearance of "non-compaction"
- No aortic coarctation

• What is your differential diagnosis now?

Infantile Cardiomyopathy

- Gestational diabetes
- Neuromuscular
- Syndromic (eg Noonan's)
- Primary hereditary cardiomyopathies
- Metabolic cardiomyopathy

Metabolic Cardiomyopathy

- Lysosomal/glycogen storage disorders
- Fatty acid oxidation defects
- Mitochondrial disorders
- Secondary nutritional deficiencies

What metabolic investigations would you do?

- CK 211 U/L
- Ammonia <9 μmol/L</p>
- Glucose 4.2 mmol/L
- Lactate 6-11 mmol/L (higher when on IV 10% dextrose)
- Renal function normal
- Liver function: ALT 230 U/L
- PT 25 sec (8.2-14.1), aPTT 86 sec (28-55)
- Free carnitine + Acylcarnitine profile
- Urine organic acids
- Plasma amino acids, total homocysteine
- DNA sample

- Thiamine, Selenium, Vitamin D
- Lysosomal
 - Urine GAG: 37 mg/mmol (5-40)
 - Alpha-glucosidase: normal activity
 - Vacuolated lymphocytes: not seen
 - Urine tetrasaccharide: normal
- Transferrin isoforms: normal
 Clotting, Protein C/S
- Cardiolipin

What metabolic investigations would you do?

Urine organic acids:

- $\uparrow \uparrow \uparrow$ Pyruvate 308 µmol/mmol creatinine
- $\uparrow \uparrow$ Lactate 258 µmol/mmol creatinine
- ↑↑ 2-oxo-glutarate
- \uparrow ethylmalonate 24 µmol/mmol creatinine

Plasma amino acids

- Unremarkable
- Alanine normal range (sample obtained when lactate normal)

Bloodspot acylcarnitine

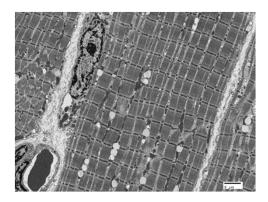
- Free carnitine 34 μmol/L (10-85)
- [↑] C4-OH (hydroxybutyryl)carnitine 0.35
 µmol/L

Urine carnitine

Normal free carnitine excretion

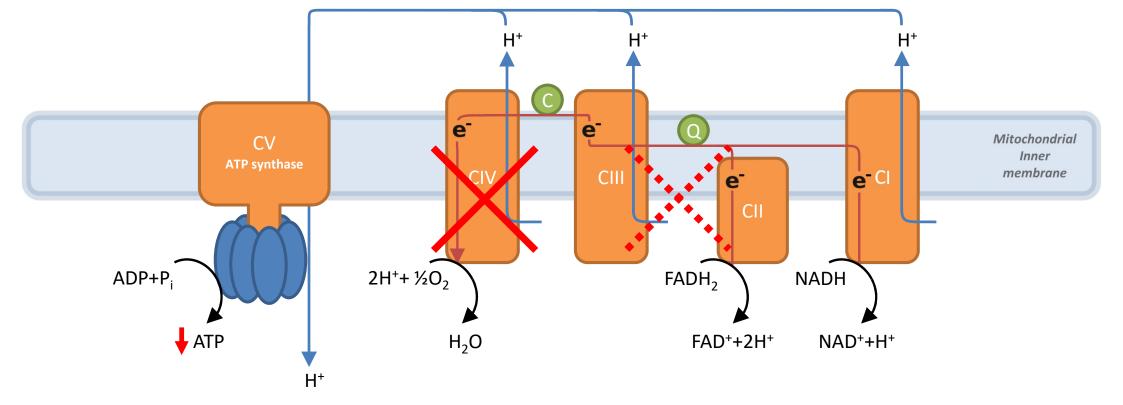
Biotinidase: normal activity

White cell ubiquinone: 169 pmol/mg (37-133)


What metabolic investigations would you do?

- Muscle biopsy:
 - Excess lipid droplets
 - No other ultrastructural abnormalities

• Muscle Respiratory Chain Enzymology


RC enzyme	Results / Citrate Synthase	Reference
Complex I	0.112	0.118-0.332
Complex II+III	0.005 🦊	0.072-0.335
Complex IV	0.001 ↓↓↓	0.013-0.039
Ubiquinone	50 pmol/mg protein	140-580

What further diagnostic investigations would you do?

the mitochondrial oxidative phosphorylation system (OXPHOS)

What further diagnostic investigations would you do?

Mitochondrial DNA

- MT-TE m.14674T>C not detected (associated with "benign reversible COX deficiency")
- mtDNA sequencing normal

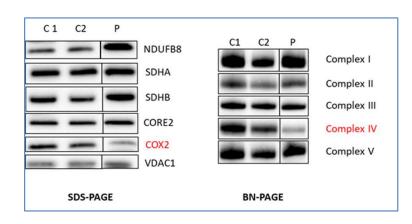
Nuclear DNA

- Untargeted Whole Exome Sequencing
- COA5 (C2orf64) homozygous variant of uncertain significance [c.157G>C, p.Ala53Pro]
 - Complex IV assembly factor
- What would you do now?

REPORT

A Mutation in *C2orf64* Causes Impaired Cytochrome *c* Oxidase Assembly and Mitochondrial Cardiomyopathy

Merei Huigsloot,^{1,2} Leo G. Nijtmans,^{1,2} Radek Szklarczyk,³ Marieke J.H. Baars,⁴ Mariël A.M. van den Brand,^{1,2} Marthe G.M. HendriksFranssen,^{1,2} Lambertus P. van den Heuvel,^{1,2} Jan A.M. Smeitink,¹ Martijn A. Huynen,³ and Richard J.T. Rodenburg^{1,2,*}

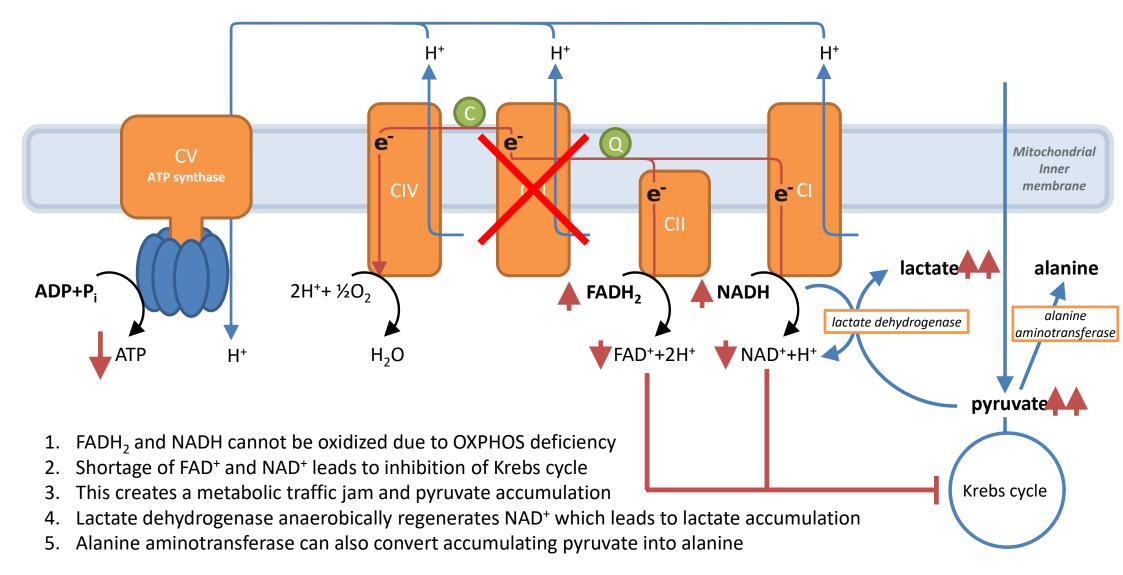

How would you confirm the diagnosis?

- Confirm Isolated C IV (COX) deficiency
 - Muscle OXPHOS immunohistochemistry
 - Significantly decreased complex IV
 - Fibroblast enzymology: significant complex IV deficiency
- Muscle Western Blot and BN-PAGE
 - Steady state levels of OXPHOS protein and assembly into functioning complexes
 - COX2 levels (C IV subunit) low
 - C IV assembly impaired

Data Courtesy of Prof Rob Taylor, Newcastle

RC enzyme (Fibroblasts)	Results / Citrate Synthase	Reference
Complex I	0.190	0.197±0.034
Complex II	0.216	0.219±0.067
Complex III	1.229	0.646±0.192
Complex IV	0.124	1.083±0.186

How would you manage the patient?


- Symptomatic/ supportive care
- Genetic counselling
- Ubiquinone supplementation
 - No sustained biochemical/clinical response
- Patient deceased 2 months progressive cardiac failure

Take home message

- 20% of hypertrophic cardiomyopathy in infants is due to inherited metabolic cause
- Targeted metabolic and mitochondrial investigations
 - Metabolic differential includes FAOD, storage disorders, mitochondrial...
- Use of rapid genetic testing helpful
 - Ensure DNA samples collected and stored
- Biochemistry and tissue samples (muscle biopsy, skin biopsy) still helpful in substantiating novel genetic findings

Mitochondriopathy with OXPHOS deficiency

Workshop Metabolic cardiomyopathies

Case 6 Sisters with cardiomyopathy

Case background

- 11-year-old girl, family recently moved to the area
- The second of four children of consanguineous parents
- Referred to cardiologist with history of dilated cardiomyopathy diagnosed at 7 years, ? viral cause
- Clinically well
- No family history of cardiac problems
- On enalapril, furosemide, spironolactone
- Underlying cause of cardiomyopathy unknown

What is your differential diagnosis? What further tests?

Cardiomyopathy Screen

- Plasma ammonia 94 μmol/L (< 50)
- Blood spot acylcarnitines \rightarrow
- Plasma free carnitine 1.3 μmol/L (23 – 52)

How do you interpret the acylcarnitine profile? What further tests are required?

Further investigations

- All acylcarnitines undetectable or well below the reference range
- Calculation of fractional excretion of carnitine

 $FEcarn = \frac{(urine \ carnitine \times \ plasma \ creatinine)}{(plasma \ carnitine \times \ urine \ creatinine)} \times 100$

Fractional excretion of free carnitine 49% (normal < 2%)

What is the diagnosis? Any further tests to confirm or exclude other causes? SSIEM Academy 2023, Manchester

plasma membrane acyl-CoA long-chain long-chain FATP synthetase fatty acid acyl-CoA mitochondrion carnitine CoA carnitine palmitoyltransferase I carnitine palmitoyltransferase II (CPT I) (CPT II) СоА CoA acylacylcarnitine carnitine carnitine acylcarnitine translocase (CACT) carnitine carnitine - 🗿 carnitine long-chain acyl-CoA **OCTN2 deficiency β-oxidation** acetyl-CoA ketones Inner mitochondrial membrane cytosol outer mitochondrial membrane

Mitochondrial fatty acid β -oxidation

Diagnosis

- Urine amino acids show no evidence of impaired renal tubular function
- Results consistent with primary carnitine deficiency Defect in organic cation transporter 2 (OCTN2)
- Genetic testing

Homozygous variant of uncertain significance *SLC22A5* c.503G>C, p.(Gly168Ala)

Is the diagnosis confirmed? Is there sufficient evidence to upgrade variant? Are there further investigations to do?

Family studies

- Parents both heterozygous for the variant
- Three siblings, all apparently asymptomatic

Age	Plasma free carnitine (ref range 23 – 52)	FEcarn (ref range < 2%)	Genetics
13 years	0.8 μmol/L	78%	Homozygous SLC22A5
8 years	22.5 μmol/L	Not done	Heterozygous
6 years	28 μmol/L	Not done	Heterozygous

• Eldest sibling reviewed

Low weight, poor appetite, tired

Echocardiogram – left ventricular cardiomyopathy

Is there evidence to upgrade the VUS to pathogenic?

Follow-up

- Patient and elder sister followed up by cardiology and metabolic services
- On carnitine 30% oral solution 900 mg four times daily Uncertain compliance Challenges of taking carnitine (oral solution or tablet?)
 - Plasma carnitine monitored
- VUS has been upgraded to likely pathogenic according to Association for Clinical Genomic Science guideline

https://www.acgs.uk.com/quality/best-practice-guidelines/#VariantGuidelines SSIEM Academy 2023, Manchester 70

Take home messages

- Defect in carnitine transporter OCTN2 causes primary carnitine deficiency and may result in cardiomyopathy
- Analysis of paired urine and plasma can be used to calculate fractional excretion of carnitine
- Patients may be asymptomatic or have mild, non-specific symptoms
- Family studies are important to identify cases
- Biochemistry results can help with classification of genetic variants