

Metabolic Cardiomyopathies

The human heart

Your heart beats:

- 1. about 100,000 times per day
- 2. about 35 million times in a year
- 3. more than 2.5 billion times in an average lifespan

Pumps about 5.5 L of blood around the body 3 times per minute

Myocardial metabolism

Largest metabolic demands of any organ

Essential: adequate oxygenation + substrates to generate ATP

Cardiac ATP: Fatty acids 70-90%; glucose; lactate; ketone bodies; amino acids

ATP is used

- To fuel contraction and relaxation (60-70%)
- To maintain membrane potential / ion pumps (30-40%)
- To fuel anabolic reactions
- By signalling system

But, the ATP pool is small and can be exhausted in a few seconds – it must be continuously synthesized

High demand for ATP

95% of ATP generated by oxidative phosphorylation in mitochondria

The heart has many mitochondria!

SSIEM Academy 2023, Manchester

Weiss and Maslov, 2004

Cardiomyopathy

Structural and functional abnormalities of the ventricular myocardium that are unexplained by flow-limiting coronary artery disease or abnormal afterload

'primary disease of the heart muscle'

Muscle becomes thickened, or dilated, or rigid, and may be replaced with scar tissue

Types of cardiomyopathy

Hypertrophic	Dilated	Restrictive	Arrhythmogenic Right Ventricle	Noncompaction
Thickening of ventricles. Changes in mitral valve. Harder for heart to pump.	Ventricles enlarge and weaken. Heart failure, valve disease, arrhythmias, clots. (alcohol and diabetes).	Ventricles become stiff and rigid but the walls of the heart do not thicken. Heart failure and valve problems.	Muscle tissue in the right ventricle is replaced with fatty or fibrous tissue. Cause arrhythmias.	Left ventricle has trabeculations, projections of muscle inside the ventricle.

Cardiomyopathy

Inherited metabolic disease causes..

Up to 20% of paediatric cardiomyopathies

5-10% of adult cardiomyopathies

Major complication, leading to death (1/3 of children presenting with heart failure die or require transplantation)

Or

Incidental finding during multisystem evaluation / surveillance

Cox GF. *Prog Pediatr Cardiol.* 2007;24(1):15-25. Byers SL, Ficicioglu C. *World J Cardiol.* 2014;6(11):1149-1155. Badertscher A, Bauersfeld U, Arbenz U, Baumgartner MR, Schinzel A, Balmer C. *Acta Paediatr.* 2008;97(11):1523-1528.

Cardiomyopathy: Paediatric

Incidence per year: 0.3-0.5 per 100,000 children

Dilated	60%	Inflammatory Toxic (chemotherapy) Inherited (Sarcomeric) IMD
Hypertrophic	25%	Infants of diabetic mothers Sarcomeric (60%)[Infants 37%] Noonan syndrome (RASopathy) IMD
Arrhythmogenic right ventricular	15%	
Restrictive		
LV noncompaction		Barth Syndrome

Prevalence: 230 per 100,000 adults

Eur Heart J, Volume 35, Issue 39, 14 October 2014, Pages 2733–2779, https://doi.org/10.1093/eurheartj/ehu284.

The content of this slide may be subject to copyright: please see the slide notes for details.

ESC European Society of Cardiology

Cardiomyopathy in IMD

Cardiomyopathy in IMD

Roles of the metabolic physician / scientist in cardiomyopathy

Assist the cardiologist in making a diagnosis (is the VUS in the cardiomyopathy panel relevant?) Assist the cardiologist in deciding whether to biochemically screen for IMD (negative genetic panel)

Organise monitoring of known IMD and support the multidisciplinary team in agreeing on therapy

Challenges

The natural history is often unknown

Prognostic risk factor stratification is unknown

The indications for specific interventions are unknown

- when to operate e.g. for valve disease in mucopolysaccharidoses?
- when to implant an cardiac defibrillator?

Cardiomyopathy in IMD

Type of disorder	Examples
Carnitine shuttle / cycle defects	Primary carnitine deficiency (SLC22A5), CACT (SLC25A20), CPT2
Fatty acid oxidation defects	VLCAD (ACADVL), LCHAD (HADHA, HADHB)
Mitochondrial disease	Multiple!
Organic acidemias	Propionic and methylmalonic acidemias
Glycogen storage disorders	LAMP2, GSD IIIa (<i>AGL</i>)
Polyglucosan body storage disorders	PRKAG2, RBCK1, GYG1, GBE
Lysosomal storage disorders	MPSI, MPSII, MPSIV, Mucolipidosis, Pompe, Fabry etc.
Others	Congenital disorders of glycosylation, Refsum disease etc.

Clues to diagnosis!

Clue	Comment	Disorder
Hypoglycemia	Suggestive of defect in energy production	Fatty acid oxidation defects Glycogen storage disorders
Hypotonia (feeding difficulties, respiratory distress)	Suggestive of systemic skeletal muscle disease	Pompe disease Mitochondrial disease Congenital disorders of glycosylation
Hepatomegaly	Suggestive of a storage disorder	Mucopolysaccharidoses; GSD
Dysmorphic features		Mucopolysaccharidoses Congenital disorders of glycosylation
Joint contractures / dysostosis		Mucopolysaccharidoses Mucolipidoses
Presenting after acute metabolic stress	eg. fasting, fever, intercurrent illness, surgery	Fatty acid oxidation defects Propionic acidemia; MMA
Hypertrophic cardiomyopathy with ventricular pre-excitation (VPE) or the Wolff–Parkinson–White (WPW) syndrome	Suggestive of a storage disorder	Lysosomal storage disorders Glycogen storage disorders Mitochondrial disorders

Carnitine related defects

Condition	Gene (inheritance)	Incidence	Cardiac involvement	Supportive clinical features	(Non-genetic) diagnostic tests	Treatment options
Carnitine deficiency, systemic primary (#212140)	SLC22A5 (AR)	1:20,000 - 1:70,000. 1 in 300 in the Faroe Islands.	Dilated / hypertrophic cardiomyopathy. Cardiac failure. Arrhythmias. Long QT syndrome.	Episodes of metabolic decompensation, skeletal myopathy, hypoketotic hypoglycemia.	Plasma carnitine. Urine organic acids. Fractional carnitine excretion.	Carnitine supplementation.
Carnitine-acylcarnitine translocase (CACT) deficiency (#212138)	SLC25A20 (AR)	<100 cases reported.	Cardiac arrhythmia, cardiomyopathy, heart block.	Hyperammonemia, liver dysfunction, hypoketotic hypoglycemia.	Plasma acylcarnitine profile. Urine organic acids. Fibroblast studies.	Avoid prolonged fasting. Dietary modification. Medium chain triglyceride supplementation. Carnitine supplementation. Triheptanoin.
Carnitine palmitoyltransferase II (CPT2) deficiency (#255110)	CPT2 (AR)	<500 cases reported.	Hypertrophic / dilated cardiomyopathy. Cardiac arrhythmias. Sudden death.	Exercise intolerance, myalgia, rhabdomyolysis, acute renal failure.	Creatine kinase. Plasma acylcarnitine profile. Urine organic acids. Fibroblast studies.	Avoid prolonged fasting. Dietary modification. Medium chain triglyceride supplementation. Triheptanoin.

Carnitine shuttle / cycle defects

Fatty acid oxidation defects

Condition	Gene (inheritance)	Incidence	Cardiac involvement	Supportive clinical features	(Non-genetic) diagnostic tests	Treatment options
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (#201475)	ACADVL (AR)	1:30,000.	Hypertrophic / dilated cardiomyopathy.	Exercise intolerance, myalgia, rhabdomyolysis, acute renal failure, liver dysfunction, hypoketotic hypoglycemia.	Creatine kinase. Plasma acylcarnitine profile. Urine organic acids. Fibroblast studies.	Avoid prolonged fasting. Dietary modification. Medium chain triglyceride supplementation. Triheptanoin.
Long chain 3- hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (#609016)	HADHA (AR)	1:250,000.	Hypertrophic / dilated cardiomyopathy.	ic / dilated Muscle weakness, athy. exercise intolerance, progressive axonal sensorimotor peripheral neuropathy, retinopathy, ataxic gait, episodic rhabdomyolysis, acute renal failure.	Creatine kinase. Plasma acylcarnitine profile. Urine organic acids. Fibroblast studies.	Avoid prolonged fasting. Dietary modification. Medium chain triglyceride
Mitochondrial trifunctional protein (MTP) deficiency (#609015)	HADHA or HADHB (AR)	NR				supplementation.

Mitochondrial fatty acid β-oxidation

Mitochondrial disease

Condition	Gene (inheritance)	Incidence	Cardiac involvement	Supportive clinical features	(Non-genetic) diagnostic tests	Treatment options
Mitochondrial disorders	Multiple genes (both nuclear DNA and mitochondrial DNA encoded) (Maternal, AD, AR)	1:5000.	Cardiomyopathy (hypertrophic, dilated, LV noncompaction), heart failure, ventricular tachyarrhythmia, sudden cardiac death.	Multisystem involvement - neuromuscular, renal, endocrinopathy, retinitis pigmentosa, sensorineural hearing loss.	Lactate (Blood / CSF). Supportive features on muscle biopsy. Mitochondrial respiratory chain enzyme activity.	Largely supportive.
Multiple acyl-CoA dehydrogenase (MADD) deficiency (also known as glutaric aciduria II) (#231680)	ETFA or ETFB or ETFDH (AR)	<500 cases reported.	Hypertrophic / dilated cardiomyopathy.	Muscle symptoms predominate - weakness, exercise intolerance. Risk of episodic vomiting, ketoacidosis / loss of appetite, acute encephalopathy. Facial and cerebral malformations.	Plasma acylcarnitine profile. Urine organic acids. Fibroblast studies.	Riboflavin supplementation.

the mitochondrial oxidative phosphorylation system (OXPHOS)

Specific mitochondrial syndromes

Barth syndromeDilated CM and LV hypertrabeculation(Neutropenia, myopathy, short stature. Gene: TAFAZZIN)

Kearns-Sayre syndromeArrhythmia (AV cardiac conduction block)(PEO, retinopathy, ataxia, endocrine. SLSMDs)

MELAS / MIDD Dilated CM and LV hypertrabeculation (encephalopathy, deafness, PEO, diabetes. m.3243A>G (*MT-TL1*))

Highly heterogeneous

Organic acidemias

Condition	Gene (inheritance)	Incidence	Cardiac involvement	Supportive clinical	(Non-genetic) diagnostic	Treatment options
				features	tests	
Propionic acidemia (#606054)	PCCA or PCCB (AR)	1:50,000 to 1:100,000	Cardiomyopathy. Arrhythmias. Sudden cardiac death.	Metabolic decompensation: ketoacidosis, hypoglycemia, hyperammonemia, pancytopenia, pancreatitis (+/- neurological sequelae), optic atrophy, hearing impairment, renal failure.	Plasma acylcarnitine profile. Urine organic acids. PCC enzyme activity.	Avoid catabolism. Dietary modification. Carnitine supplementation. Carglumic acid.
Methylmalonic acidemia	<i>cblA, cblB,</i> or <i>cblD</i> -MMA (AR)	1:50,000 to 1:100,000	Cardiomyopathy. Arrhythmias.	Metabolic decompensation: respiratory distress, severe ketoacidosis, hyperammonemia, neutropenia, and thrombocytopenia. Developmental delay. Basal ganglia 'stroke'. Pancreatitis, renal impairment, optic atrophy.	Plasma acylcarnitine profile. Plasma amino acids and MMA. Urine organic acids. Fibroblast studies.	Avoid catabolism. Dietary modification. High dose B12. Carnitine supplementation. Carglumic acid.

Glycogen storage disorders

Disease	Enzyme / Protein	Gene (Inheritance)	Cardiac involvement	Other supportive clinical features
Glycogen storage disorders				
II (Pompe)	Acid maltase	GAA (AR)	Short PR, wide QRS, cardiomegaly, LVOTO.	Hypotonia. Macroglossia. Feeding difficulties.
IIb (Danon)	LAMP-2	LAMP2 (XL)	Left ventricular hypertrophy. Ventricular preexcitation. Ventricular arrhythmias.	Retinal dystrophy.
IIIa (Cori-Forbes)	Glycogen debranching enzyme	AGL (AR)	Hypertrophic cardiomyopathy. Cardiac failure. Sudden death.	Hypoglycemia. Hepatomegaly.
V (McArdle)	Myophosphorylase	PYGM (AR) Coronary artery disease.		Exercise intolerance, myalgia, rhabdomyolysis.
Polyglucosan body storage (PGB) diso	rders			
PRKAG2	gamma subunit of AMP-kinase	PRKAG2 (AD)	Ventricular pre-excitation.	No
RBCK1	RanBP-type and C3HC4-type zinc finger-containing 1	RBCK1 (AR)	Cardiac failure.	Skeletal myopathy. Autoimmunity. Recurrent infections.
GYG1	Glycogenin-1	GYG1 (AR)	(Dilated) cardiomyopathy. Cardiac failure.	Skeletal myopathy.
GSD IV	Glycogen branching enzyme	GBE (AR)	Hypertrophic / dilated cardiomyopathy.	Hypotonia. Neurologic disease. Liver disease.
GSD VII (Tarui)	Phosphofructokinase	PFKM (AR)	Valve disease. Hypertrophic cardiomyopathy.	Haemolytic anemia. Exercise intolerance, myalgia, rhabdomyolysis.

Glycogen

<u>Glycogen</u>

Soluble Tightly packed, highly organised structure Accessible source of glucose ie. energy Reduces osmotic pull of intracellular glucose Occupies 2% of cardiomyocyte volume of adult and 30% of neonate

Polyglucosan body

Disorganised, elongated chains, poorly branched Inert – reduced supply of intracellular glucose Associated with swollen, enlarged cells

Lysosomal storage disorders 1 SIEM 2023

Condition	Gene (inheritance)	Incidence	Cardiac involvement	Supportive clinical features	(Non-genetic) diagnostic	Treatment options
MPS I (Hurler, Scheie disease)(#607015)	IDUA (AR)	1:100,000 (severe from) to 1:500,000 (attenuated form).	Cardiac valve thickening Hypertrophy. Conduction abnormalities. Coronary artery disease. Large vessel arterial narrowing / dilation. Hypertension.	Dysostosis multiplex (arthropathy). Hepatosplenomegaly. Corneal clouding. Hearing impairment. Herniae.	Urine glycosaminoglycans. α -L-iduronidase enzyme activity.	Hematopoietic stem cell transplantation. ERT for systemic features but does not affect CNS disease.
MPS II (Hunter disease)(309900)	IDS (XL)	1:100,000 to 170,000 (males). Some symptomatic females also reported.	Cardiac valve thickening Hypertrophy. Conduction abnormalities. Coronary artery disease. Large vessel arterial narrowing / dilation. Hypertension.	Dysostosis multiplex. Short stature. Hepatosplenomegaly. Herniae. Global developmental delay.	Urine glycosaminoglycans. Iduronate 2-sulfatase enzyme activity.	ERT for systemic features but does not affect CNS disease. Hematopoietic stem cell transplantation.
MPS IV (Morquio disease)(#253000)	MPS IVA - GALNS(AR) MPS IVB - GLB1 (AR)	MPS IVA 1:599,000 (UK). MPS IVB 1:1,000,000.	Similar to other MPS disorders but prevalence of cardiac involvement is lower.	Normal intellect. Short stature. Dysostosis multiplex. Restrictive lung disease. Corneal clouding. Hearing impairment.	Urine glycosaminoglycans. N-acetylgalactosamine 6- sulfatase enzyme activity.	ERT (for MPS IVA).
MPS VI (Maroteaux-Lamy disease)(#253200)	ARSB (AR)	23 in 10,000,000 (Germany). 40 in 10,000,000 (Australia).	Cardiac valve thickening Hypertrophy. Conduction abnormalities. Coronary artery disease.	Normal intellect. Short stature. Dysostosis multiplex.	Urine glycosaminoglycans. N-acetylgalactosamine-4- sulphatase enzyme activity.	ERT.

Valve involvement in adult MPS

MPS Type	Number of subjects; (age range in years)	% Mitral regurgitation	% Aortic regurgitation	% Mitral stenosis	% Aortic stenosis	Reference/comment
1	6; (18–29) 9; (21–43)	100 100	83 100	50 11	50 22	26 16
II	10; (21–53)					27 10 patients: 'valvular heart disease consisting mainly of aortic and/or mitral valve insufficiency'
IV	69; (>18)	28	39	8.7	16	5
VI	10; (18–38) 9; (19–29)	100 22	100 78	90 22	90 11	22 18

Multidisciplinary team discussion regarding treatment

(metabolic, spinal, respiratory, airway, cardiology, cardiothoracic surgeon, anaesthetist)

Limited evidence for best timing or type of surgery to perform

Braunlin, Heart 2016

Lysosomal storage disorders 2 SIEM 2023

Condition	Gene (inheritance)	Incidence	Cardiac involvement	Supportive clinical features	(Non-genetic) diagnostic tests	Treatment options
Mucolipidosis II/III (#252500, #252600, #252605)	GNPTAB (AR); GNPTG (AR)	<1:100,000	Valvular disease. Left and / or right ventricular hypertrophy. Pulmonary hypertension.	Joint stiffness, dysostosis multiplex. Short stature. Restrictive lung disease.	Urine oligosaccharides. Plasma acid hydrolase activities. N- acetylglucosamine-1- phosphotransferase enzyme activity.	Supportive.
Lysosomal acid lipase deficiency (#278000)	LIPA (AR)	1:350,000 (severe infantile form). 1:50,000 (late onset form).	Atherosclerosis.	Infantile: failure to thrive, hepatomegaly, liver failure, adrenal calcification. Late- onset: dyslipidemia, hepatic fibrosis / cirrhosis, atherosclerosis.	Lipid profile. Lysosomal acid lipase enzyme activity.	ERT. Liver transplant.
Fabry disease (#301500)	GLA (XL)	1:50,000 to 1:117,000 males.	Cardiomyopathy. Stroke.	Renal impairment. Acroparathesia. Angiokeratomota.	GLA enzyme activity (men).	ERT. Chaperone therapy.

Non-syndromic genetic CM

Isolated cardiomyopathy in disorders typically thought to be associated with multisystem organ involvement

Typically found by genetic testing (WGS, exome, CM panels)

May / may not be associated with biochemical abnormalities

Malonyl-CoA decarboxylase deficiency

Gene: MLYCD

Autosomal recessive

Developmental delay Hypotonia Seizures Metabolic acidosis Hypoglycemia Cardiomyopathy

Malonyl-CoA decarboxylase deficiency

30 year old female, CM noted during pregnancy

Homozygous for novel p.Ser241Leufs*17 in *MLYCD* gene (premature stop codon)

Acylcarnitine profile:

Total carnitine	28	(26-62 umol/L)
Free carnitine	24	(22-50 umol/L)
Acylcarnitine	4	(4-12 umol/L), increased C3DC (malonyl carnitine) 0.88 (<0.09 umol/L)

Fibroblast culture, malonyl CoA decarboxylase activity (UMC, Amsterdam): 6.5 nmol/(hour.mg protein) (Normal: 20.4 ± 6.8 nmol/(hour.mg protein)) In X5 MCoAD cell lines < 4.3 nmol/(hour.mg protein))

Malonyl-CoA decarboxylase deficiency

Abnormal metabolites may be more subtle / easily missed in adults

Dolichol kinase-CDG

22 year old female

Presented with progressive exercise intolerance Diagnosed with dilated CM

Panel of CM genes: homozygous c.1372G>A p.(Gly458Ser) variant in *DOLK*

No other systemic features Serum transferrin isoform IEF – abnormal type 1 pattern

Reduces O-mannosylation of alpha-dystroglycan in cardiac muscle – reduced capacity to bind laminin

Dolichol kinase-CDG

Lefeber et al, PLoS Genetics, 2011

11 patients (from 4 families)

5-13 years

CM: asymptomatic – mild – severe

Abnormal transferring IEF for Nglycosylation abnormalities; reduced dolichol kinase activity in fibroblasts No ataxia, seizures, intellectual disability (except mild in 1 family)

Kapusta et al, Heart Fail Rev, 2013

9 patients, 3 families

- All < 10 years
- CM: asymptomatic mild severe

Abnormal transferrin IEF for Nglycosylation abnormalities Abnormal coagulation studies

3 patients had cardiac transplant

Investigations

Cardiac function

ECG ECHO MRI Exercise testing Rhythm and event monitoring Blood pressure monitoring Angiogram Cardiac biopsy

First line testing
Glucose
FBC
Ferritin, transferrin saturation
Electrolytes including calcium
Lipid profile
Blood gas, anion gap
Lactate
Ammonia
Creatine kinase
Brain natriuretic peptide (BNP)
Specialist metabolic testing / Genetic tests

Laboratory investigation of metabolic causes of cardiomyopathy

Primary carnitine deficiency

- Organic cation/carnitine transporter 2 deficiency
- Very low plasma/DBS carnitine and acylcarnitines

SSIEM Academy 2023, Manchester

Primary carnitine deficiency

- If patient is on carnitine, may be difficult to identify
- Calculation of fractional excretion of carnitine

FEcarn = $\frac{(\text{ur carnitine} \times \text{pl creatinine})}{(\text{pl carnitine} \times \text{ur creatinine})} \times 100$

- All analytes in the same units
- Paired samples
- Normal fractional excretion of carnitine <2%
- Exclude renal tubular dysfunction

CACT and CPT2

- Increased long chain fatty acids (C16, C18, C18:1)
- Long-chain FAs associated with red blood cell membranes
- Dried blood spots > plasma
- More difficult to identify increases in DBS than plasma

Volume 110, 2013, Pages 116-121

Bloodsno

Acylcarnitine profiles in paired control samples

ACADEMY 2023

C18 results in patients with CPT2 deficiency

SSIEM Academy 2023, Manchester

38

CACT and CPT2

- C16+C18:1/C2 ratio increases diagnostic sensitivity in DBS
- ERNDIM ACDB-UL-2020-A
 - DBS sample from 1-year old, cardiomyopathy, CACT deficiency
 - Only 15/44 participants suggested CPT2 or CACT
- CACT and CPT2 distinguished by genetic testing

Glycogen storage disorders Lysosomal storage disorders

- GSD Enzyme assays
 - Acid maltase (Pompe) in DBS or leucocytes, readily available
 - Others mainly used to confirm results of genetic testing
- In most cases, genetic testing is first-line if GSD suspected
- LSDs
 - Urinary Glycosaminoglycans (GAGS) mucopolysaccharidoses
 - Specific enzyme activities
 - Metabolites lyso-GB3
 - Genetic testing

Barth syndrome

- Variable phenotype
 - Cardiomyopathy (most DCM, also HCM)
 - Skeletal muscle weakness
 - Neutropenia
 - Growth retardation
 - 3-methylglutaconic aciduria
- Variants in TAZAFFIN gene (X-chromosome) cause abnormalities in cardiolipin, a mitochondrial membrane phospholipid

Barth syndrome

- Diagnostic challenge and delay
- Urine 3-methylglutaconic acid in patient with cardiomyopathy and/or other features should prompt further investigations
- 3-MCG is non-specific and may not be increased
- Analysis of blood spot cardiolipin profile is sensitive and specific for the disorder

- Who sees the patient?
 - Acute presentation to cardiac unit
 - Referral to metabolic/genetic service
- Protocol prepared by multi-disciplinary team
 - Helpful for non-metabolic clinician
 - Untargeted
 - Requires a lot of blood

Virology & Microbiology					Biochemistry		
Test	Sample	Date sent	Result	Test	Sample		
influenza CFT	1 x full serum (gold)			Glucose	1 x Fl Ox (grey)		
(convalescent anti- bodies)				Lactate			
HIV				TSH/FT4	1 x full serum (gold		
gM Parvovirus				Ca, PO4			
gM CMV				Vitamin D			
EBNA IgG (> 1 γ)				Uric acid]		
EBV VCA IgM (< 1 y)				CK			
ASO				Total Cholesterol			
Based on symptoms	1 x EDTA (purple)			Triglyceride			
and history mucoplasma, HSV	(IN COMES			Ferritin	1		
HBV, HCV				Transferrin	1		
	satura	saturation					
PCR enterovirus and CMV				PTH	1 x EDTA (purple)		
PCR enterovirus:	1 stool sample	le Ammonia 1 x EDTA (purple)					
tools					ON ON		
CR in respiratory	Sterile container			Bioch	emistry – Metaboli		
ecretions	The second second			Transferrin	1 x Serum		
	All Barrows			isoforms			
				wks post-transfusion			
				Acylcarnitines	1 x EDTA (purple)		
hroat swab C&S	Culture tube			Pompe Screen	10 - CO. 10		
	-			Cardiolipin (males)	1		
Blood culture if	Paediatric blood			Amino acids	1 x Li-hep (green		
pyrexial	culture tube				- Alizzait		
				Urine organic acids	10 ml urine		
Muscle Biopsy: to	be taken with first pr	ocedur	e	Urine MPS screen	III BREEK		

Genetic testing: If dysmorphic features, consanguinity or family history of cardiomyopathy, refer to clinical genetics and take a blood sample for DNA storage, EDTA (purple top) tube.

This protocol was revised in April 2017 by Dr Andres Rico-Armanda (paediatric cardiology), Dr Ann Bowron (Clinical Biochemistry), Dr Danielle Brown (Clinical

Challenges

- Patients < 5 days of age
- Blood transfusion
- Medications
- ECMO
 - extra-corporeal membrane oxygenation
 - mechanical support for heart and lungs
 - blood removed, oxygenated, CO₂ removed, returned to body
 - blood transfusion
 - ?acute phase response due to metal tubing

More challenges

- Have investigations been performed previously? (Variable cardiomyopathy screens)
- Genetics: rapid screens, VUSs
- Collection of samples for storage if patient dies
- Treatment before samples taken
- Mild, late presenting cases

Summary

- Cardiomyopathy is an important feature of many IMD
- Investigation of metabolic cardiomyopathy requires a multi-disciplinary approach (find a friendly cardiologist)
- Metabolic investigations of cardiomyopathy can be a challenge
 - Clinical state of the patient
 - Sample (type, quality and timing) dependent
 - Influence of treatment on results